WINTER- 18 EXAMINATION
 Subject Name: Electric circuits and network Model Answer Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. } N . \end{aligned}$	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	Define: (i) Admittance (ii) Conductance	2M
	Ans:	i) Admittance-: Admittance is defined as the reciprocal of impedance .It is denoted by Y . It is given by $\mathbf{Y}=(\mathbf{1} / \mathrm{Z})$ ii) Conductance: Conductance is the ratio of resistance to the square of impedance .It is denoted by G. It is given by $\mathbf{G}=\left(\mathbf{R} / \mathbf{Z}^{2}\right)$	1 M for each definitio n

WINTER- 18 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject Code:

OURPRequers :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

WINTER- 18 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject Code:

```
22330
```

	(d)	Draw re	nance curve for series resonance.	2M
	Ans:			2M
	e)	Define: (i) (ii)	Node Branch	2M
	Ans:	i) ii)	Node : Node is a junction or common point in a network where two or more branches meet. Branch : A branch is defined as that part of a network which lies between two junctions.	1 M for each definitio n

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

	f)	State Thevenins theorem.	2M
	Ans:	Any network containing active and/or passive elements and one or more dependent and/or independent voltage/or current sources can be replaced by an equivalent network containing a voltage source (Thevenin's equivalent voltage $\mathrm{V}_{T H}$ or $\mathrm{V}_{\text {OC }}$) and a series resistance (called Thevenin's equivalent resistance $R_{T H}$), where $V_{o c}$ or $\mathrm{V}_{T h}$ is the voltage measured across specified open terminals and $R_{T h}$ is the resistance measured across the same terminals when all the sources present in the network are replaced by their internal resistances.	2M
	g)	Write the formula for Delta to Star conversion giving examples.	2M
	Ans:	The formula for Delta to Star conversion-	2M
Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
2		Attempt any THREE of the following:	12- Total Marks

WINTER- 18 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject Code:

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

WINTER- 18 EXAMINATION
Subject Name: Electric circuits and network
Model Answer Subject Code:

22330

WINTER- 18 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject Code:

	d)	Three resistances $32 \Omega, 40 \Omega, 48 \Omega$ are connected in star circuit. Determine its equivalent delta circuit.	4M
	Ans:		
$\mathrm{Q} .$ No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any THREE of the following :	12-Total Marks

OURPaqe ${ }^{8}$ (ZERS :

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

$$
\begin{array}{rlr}
Q \text {-factor } & =2 \pi \frac{\text { maximum stored energy }}{\text { energy dissipated per cycle }} & \ldots \text { in the circuit } \\
& =2 \pi \frac{\frac{1}{2} L I_{0}^{2}}{I^{2} R T_{0}}=2 \pi \frac{\frac{1}{2} L(\sqrt{2} I)^{2}}{I^{2} R\left(1 / f_{0}\right)}=\frac{I^{2} 2 \pi f_{0} L}{I^{2} R}=\frac{\omega_{0} L}{R}=\frac{1}{\omega_{0} C R} \quad \ldots\left(T_{0}=1 / f_{0}\right)
\end{array}
$$

iii)
resonant frequency, $f_{0}=\frac{1}{2 \pi \sqrt{(L C)}}$ or $2 \pi f_{0}=\frac{1}{\sqrt{(L C)}}$
Substituting the above in equation, $\mathrm{Q}_{0}=\frac{2 \pi f_{0} \mathrm{~L}}{\mathrm{R}}$, we get,

$$
\mathrm{Q}_{0}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{~L}}{\mathrm{C}}}
$$

iv) Q-factor of a resonant series circuit may be written as,

$$
Q_{0}=\frac{\omega_{0}}{\text { bandwidth }}=\frac{\omega_{0}}{\Delta \omega}=\frac{\omega_{0}}{R / L}=\frac{\omega_{0} L}{R}=\frac{L}{R \sqrt{L C}}=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

v) It may also be deduced as,

$$
Q_{0}=\frac{\omega_{0} L}{R}=\frac{1}{\omega_{0} C R}=\frac{1}{R} \sqrt{\frac{L}{C}}=\sqrt{\frac{X_{L 0} X_{C 0}}{R}}=\frac{f_{0}}{B_{h p}}=\frac{\omega_{0}}{\omega_{2}-\omega_{1}}=\frac{f_{0}}{f_{2}-f_{1}}
$$

Where $\mathrm{B}_{\mathrm{hp}}=$ bandwidth of the circuit

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network
Model Answer Subject Code:
22330

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

Ans:	(1) Apply kVL to loop ABEFA, $\begin{align*} & -2 I_{1}-4\left(I_{1}-I_{2}\right)+10=0 \\ & -2 I_{1}-4 I_{1}+4 I_{2}=-10 \\ & -6 I_{1}+4 I_{2}=-10 \end{align*}$ (2) Apply $K V L$ to loop $B C D E B$, $\begin{align*} & -3 I_{2}-5-4\left(I_{2}-I_{1}\right)=0 \\ & -3 I_{2}-5-4 I_{2}+4 I_{1}=0 \\ & 4 I_{1}-7 I_{2}=5 \tag{2} \end{align*}$ solving equs. (1) \& (2) We get, $I_{1}=1.92 \mathrm{~A}, I_{2}=0.38 \mathrm{~A}$ \therefore Cwrent through $402, I_{1}-I_{2}=1.92-0.38$ $\begin{aligned} & =1.92-0.38 \\ & =1.54 \mathrm{~A}(\text { downeavads }) \end{aligned}$	Correct calculati on- 4M(Give step marking)
d)	Explain the procedure for solving Thevenins theorem using suitable example.	4M
Ans:	Steps to find Thevenin's equivalent circuit, taking an example is as follows:	1M each

WINTER- 18 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject Code:

22330

Fig.(a)

fig.(b)

fig.(c)

1. From the given circuit(fig.a), Remove R_{L} from the terminals A and B and redraw the circuit as shown in Fig.b.
2.Calculate the open-circuit voltage Voc which appears across terminals A and B.

As seen, $V o c=$ drop across $R_{2}=I R_{2}$ where I is the circuit currentwhen A and B are open.

$$
\begin{aligned}
& I=\frac{E}{R_{1}+R_{2}+r} \quad \therefore V_{o c} \neq I R_{2}=\frac{E R_{2}}{R_{1}+R_{2}+r}[r \text { is the internal } \\
& \text { resistance of battery }]
\end{aligned}
$$

It is also called 'Thevenin voltage' $V_{\text {th }}$.
3.Now, imagine the battery to be removed from the circuit, leaving its internal resistance r behind and redraw the circuit, as shown in Fig.(c). When viewed inwardsfrom terminals A and B, the equivalent resistance is given as,

$$
R=R_{2} \|\left(R_{1}+r\right)=\frac{R_{2}\left(R_{1}+r\right)}{R_{2}+\left(R_{1}+r\right)}
$$

This is called Thevenin's equivalent resistance $R_{\text {th }}$.
4. Connect R_{L} back across terminals A and B (fig. d$)$ from where it was temporarily removed earlier.

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network
Model Answer Subject Code:
22330

		Current flowing through $R L$ is given by $I=\frac{V_{t h}}{R_{t h}+R_{L}}$ Fig.(d)	
$\begin{array}{l\|l} \text { Q. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
4		Attempt any THREE of the following :	12- Total Marks
	(a)	A coil has resistance of $\mathbf{4 \Omega}$ and an inductance of 9.55 mH . Calculate (i) Reactance (ii) The impedance (iii) The current taken from $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.	4M

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

Ans:	Data given: $R=4 \Omega, L=9.55 \mathrm{~mA}, V=240 \mathrm{~V}, \quad f=50 \mathrm{~Hz}$ i) Reactance, $X_{L}=2 \pi f L=2 \times 3.14 \times 50 \times 9.55 \times 10^{-3}=3 \Omega$ ii) Impedance, $Z=R+j x_{L}=4+j 3=5136.87 \Omega$ iii) Current, $I=\frac{V}{Z}=\frac{240}{5}=48 A$ (or) (ii) Smpedance, $Z=\sqrt{R^{2}+X L^{2}}=\sqrt{4^{2}+3^{2}}=5 \Omega$	1M each for paramet ers \& 1M for proper steps followed
(b)	Draw the phasor diagrams for a series R Land series $R C$ with AC supply.	4M
Ans:	Phasor diagram of RL series circuit:	2M for each diagram

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

WINTER- 18 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject Code:
22330

| | | $\mathbf{5}$ | Applied voltage equals the sum
 of different voltage drops. | Individual voltages is equal to supply voltage |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (d) | Using source transformation technique find the resultant current (I) through circuit. (Refer
 fig. 2) | 4M | | |
| $\mathbf{7}$ | Posistances are additive. | Conductances are additive. | | |

Ans:	Adding both the Sowrces the circuit becomes, Its equivaleat Current Sorrce is $I=5 \mathrm{~A}$	Correct calculati on-4M
(e)	Using super-position theorem find current through 4Ω resistance.(Refer fig. 3) Fig. 3	4M

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

	Ans:	Step I (with 6 V Source alone.) $\begin{aligned} T^{\prime} & =\frac{V}{R e q}=\frac{6}{3+4 /((s+2)} \\ & =\frac{6}{3+2.55}=1.08 \mathrm{~A} \end{aligned}$ $I_{1}^{\prime}=\frac{I_{\times(5+2)}^{\prime}}{4+5+2}=\frac{1.08 \times 7}{11}=0.69 \mathrm{~A} \downarrow$ step II (Witt 12 V alone) $\begin{aligned} & I_{2}^{\prime \prime}=\frac{V}{\operatorname{Req}}=\frac{12}{5+(3 / 14)+2} \\ & =\frac{12}{8 \cdot 11}=1 \cdot 38 A \end{aligned}$ $I_{1}^{\prime \prime}=\frac{I_{2}^{\prime \prime} \times 3}{3+4}=\frac{1.38 \times 3}{7}=0.59 \mathrm{~A}$ - Carrent through $402=I_{1}^{\prime}+I_{1}^{\prime \prime}=0.69+0.59=1.28 \mathrm{A6}$	Corrct calculati on -4M
$\begin{array}{l\|l} \text { Q. } \\ \text { No. } \end{array}$	Sub Q.N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	Derive the expression for resonance frequency for parallel circuit.	6M
	Ans:	A parallel circuit containing an inductance and a capacitance is said to be in resonance when the current through the parallel combination is in phase with the supply voltage. Consider a parallel combination of L and C as shown below.	Diagram 2M, derivati on 4M

WINTER- 18 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject Code:

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

WINTER- 18 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject Code:
22330

		Fig. 4	
	Ans:	$\infty-5$ in $\frac{1}{8} \frac{1}{8}+\frac{1}{1}=\Omega$ For Iñep 1 For RN.	To find $I_{N} 1 M$ $\mathrm{R}_{\mathrm{N}} \mathbf{2 M}$ Equivale nt ckt. 1M $I_{L} 1 M$ $\mathrm{I}_{8} 1 \mathrm{M}$
	c)	Explain ' Π ' and ' T ' circuit with proper phasor diagram.	6M
	Ans:	Note: As phasor diagram of ' Π ' and ' T ' circuit is not specified in syllabus, marks may be awarded for any relevant diagram and explanation of T and π network.	Diagram 2M each Explanat ion: 1M each

WINTER- 18 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject Code:

| Q.
 No. | Sub
 Q.N. | Answers | Marking
 Scheme |
| :--- | :--- | :--- | :--- | :--- |
| 6. | | Attempt any TWO of the following : | 12- Total
 Marks |

WINTER- 18 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject Code:

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network Model Answer Subject Code:

		Where N_{1} and N_{2} are two 2-port networks	

